z^3+iz^2+18i-3z=0

Simple and best practice solution for z^3+iz^2+18i-3z=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for z^3+iz^2+18i-3z=0 equation:


Simplifying
z3 + iz2 + 18i + -3z = 0

Reorder the terms:
18i + iz2 + -3z + z3 = 0

Solving
18i + iz2 + -3z + z3 = 0

Solving for variable 'i'.

Move all terms containing i to the left, all other terms to the right.

Add '3z' to each side of the equation.
18i + iz2 + -3z + 3z + z3 = 0 + 3z

Combine like terms: -3z + 3z = 0
18i + iz2 + 0 + z3 = 0 + 3z
18i + iz2 + z3 = 0 + 3z
Remove the zero:
18i + iz2 + z3 = 3z

Add '-1z3' to each side of the equation.
18i + iz2 + z3 + -1z3 = 3z + -1z3

Combine like terms: z3 + -1z3 = 0
18i + iz2 + 0 = 3z + -1z3
18i + iz2 = 3z + -1z3

Reorder the terms:
18i + iz2 + -3z + z3 = 3z + -3z + -1z3 + z3

Combine like terms: 3z + -3z = 0
18i + iz2 + -3z + z3 = 0 + -1z3 + z3
18i + iz2 + -3z + z3 = -1z3 + z3

Combine like terms: -1z3 + z3 = 0
18i + iz2 + -3z + z3 = 0

The solution to this equation could not be determined.

See similar equations:

| 4x+5(x-3)=48 | | (3x^2+7)(x^2+8)= | | z^3+iz^2+18i-3z=2i | | 8=6k-4(k+1) | | 5x^3+14x^2+13x-4=0 | | 5x^3+14x^2+13x-4= | | (x+2)+(x+4)+(x+6)+(+8)=212 | | -2x^2+5x+1=0 | | 3x+24=6(x+5) | | (x+2)+(x+4)+(x+6)=212 | | -3k+10=2k-21 | | 1/3=1/4+2/3 | | 3z+(+2)=-8 | | y=-5/2(2)+2 | | 1/5x2 | | y=-5/2(-2)+2 | | y=-5/2(0)+2 | | z^3+iz^2+18i=3z | | -12+4n=-6+3n | | 5j+3(2j+1)=80 | | -n(10n+4)=0 | | 10+5=3x+9 | | 3/4y-1/2=5/3 | | y=-5/3(3)+3 | | 3/15*1/25 | | 37=p-8+2p | | 3/2-5/3-(3/5+5/4-1/6) | | h(t)=-16t^2+35 | | 1.5f-0.3f+0.3=11.1 | | x-3y=-22 | | 3iks+2y=5 | | 1.5-0.3f+0.3=11.1 |

Equations solver categories